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Abstract—Edge computing paradigm is prone to failures as
it trades reliability against other quality of service properties
such as low latency and geographical prevalence. Therefore,
software services that run on edge infrastructure must rely
on failure resilience techniques for uninterrupted delivery.
Unique combination of hardware, software, and network
characteristics of edge services is not addressed by existing
techniques that are designed or tailored for cloud services.
In this work, we propose a novel method for evaluating the
resilience of replicated edge services, which exploits failure
dependencies between edge servers to forecast probability of
service interruption. This is done by analyzing historical failure
logs of individual servers, modeling temporal dependencies as
a dynamic Bayesian network, and inferring the probability
that certain number of servers fail concurrently. Furthermore,
we propose two replica scheduling algorithms that optimize
different criteria in resilient service deployment, namely failure
probability and cost of redundancy.

Keywords-Edge Computing; Failure Resilience; Fault Tol-
erance; Availability; Quality of Service; Dynamic Bayesian
Networks.

I. INTRODUCTION

One of the major determinants behind the success of
cloud computing is the economical gain that consolidation of
compute resources brings. This leads to proliferation of large
centralized computing facilities such as massive cloud data
centers, which benefit from economies of scale. However,
latency-sensitive and data-intensive services, that are coming
into more prominence by means of Internet of Things and
mobile computing technologies, are adversely affected by
centralization due to the increasing distances between where
data is produced, processed, and consumed [1]. Emerging
edge and fog computing paradigm aims to remedy this defect
of cloud computing by bringing part of the computation to
the close proximity of data producers and consumers. It
is meant to seamlessly interoperate with cloud computing
rather than to replace it.

In addition to evident latency and bandwidth advantages,
edge computing can also help to mask cloud outages tem-
porarily and to enforce privacy policies by determining
which data are sent to the cloud [2]. However, as any
emerging technology, edge computing also is not without its
problems to be addressed. Particularly, edge servers are more
prone to failures and outages than cloud counterparts due to
(i) geographical dispersion which complicate management

and maintenance, (ii) small scale in terms of computation
and storage resources which preclude hardware redundancy,
(iii) limited horizontal and vertical scaling opportunity in
case of volatile workload, and (iv) absence of advanced
support systems such as fully duplicated electrical lines
with transfer switches, diesel backup generators, clean agent
fire suppression gaseous systems, and direct liquid cooling.
Therefore, an effective resilience technique, such as replica-
tion, is needed for edge services in order to avoid service
interruption or service-level agreement (SLA) violation due
to fail over to cloud or recovery from backup [3]. Such
disruptions cause significant revenue loss in a business
environment. Recently, a four-hour outage of Amazon Web
Services is reported to affect 54 of the top 100 online retailer
services, which lost $150 million in total [4]. Whereas,
Amazon retail website is estimated to lose 1% of sales for
every 100 ms of delay [5]. Worse still, modern Internet
services are getting less tolerant to downtime: average cost
of a data center outage has increased from $505,000 to
$740,000 between 2010 and 2016 [6].

Previous work in the field of system reliability already
showed that there exists correlation between failures in
distributed computing systems [7]–[9]. Agreeing with the
literature, we assume that edge server failures are inter-
correlated, hence having copies deployed at servers that
probabilistically fail in overlapping periods will deteriorate
or even nullify availability benefits of replication. Our ex-
perimental results confirm the validity of this assumption.
In this work, we propose a probabilistic technique for
forecasting interruptions in replicated, near real-time edge
services due to failures in edge servers. Our approach
exploits spatial and temporal failure dependencies among
edge servers to compute joint failure probability (JFP). We
model failure dependencies as a dynamic Bayesian network
(DBN) and automatically learn them from historical traces.
Then, we employ an efficient inference algorithm based on
variable elimination to compute the JFP of a given service
deployment. Proposed technique is unique in the way that
historical trends are combined with failure dependencies,
and that availability of multiple edge servers are evaluated in
the aggregate. Our hypothesis is that, JFP is a more precise
criteria for resilience than failure probabilities of individual
servers when evaluating deployment and replication plans
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Figure 1. Main components of the proposed technique and data flow between them.

of edge services. Our second contribution is to support
this hypothesis by utilizing JFP for task scheduling at the
edge. We propose two dependency-aware failure resilience
(DAFR) algorithms that optimize the deployment of edge
services. Finally, we simulate proposed algorithms using
multiple real-world failure traces with various availability
characteristics and we demonstrate the effectiveness of our
approach with respect to dependency-oblivious baselines in
terms of both increasing failure resilience and decreasing the
cost of redundancy.

Failure forecasting is a valuable input for the scheduler
and replica manager of any edge computing service to make
better informed decisions about resilience. In addition to
our utilization in evaluating replication plans at deployment
time, it can also be employed at design time to compare best,
average, worst case resilience of models; or at execution
time to trigger proactive failure mitigation mechanisms.
Once latency benefits of edge computing are complemented
with failure resilience, many near real-time services such
as live video analytics [10] and streaming [11], vehicular
applications [12], [13], and smart city information systems
[14] could be included to the cloud and edge comput-
ing ecosystem. Note that, proposed techniques for edge
service resilience in this work are probabilistic in nature,
thus they are not to guarantee absolute availability under
failures for safety-critical and hard real-time applications.
They do, however, promise satisfactory quality of service
(QoS) under a limited budget for most prospective edge
computing applications as exemplified above. As a reference,
Open Data Center Alliance defines in Standard Units of
Measure for IaaS report1 that highest category of cloud
data centers (i.e. Platinum) must offer 99.99% availability.

1https://joinup.ec.europa.eu/solution/standard-units-measure-iaas-rev-11-
standard-units-measure-iaas/

The same monthly availability level is also promised in
Amazon EC2 SLA2. According to our evaluation, DAFR
algorithms achieve comparable QoS levels despite highly
unreliable edge resources. Another important remark at this
point is that, our methods make no assumption on the
virtualization technology or data processing architecture. We
believe proposed scheduling algorithms will be applicable to
virtual machines (VM) as well as more light-weight imple-
mentations such as containers and microservices. Hence, we
use the general terms of task or copy throughout the paper.
While applicable to both lambda and kappa architectures,
our approach can particularly advance the latter; in which
absence of batch layer might result in errors and thus, high
availability is a strong requirement.

Fig. 1 gives an overview of the proposed architecture
with the flow of data between components. Whereas the
details of each component as well as inputs and outputs
(with notation in Table I) are described thoroughly in the
rest of the paper, the main process can be summarized
as follows. As the one-off preliminary step, failure traces
of edge services are collected from system monitors and
a DBN model is trained with data. This model represents
the existence and strength of dependencies between servers.
Then, service providers define characteristics and resilience
requirements of their edge services. Often, these are the
outputs of a service deployment planning process such as
UML Deployment Diagram or OASIS TOSCA3. DAFR algo-
rithms in return, evaluate various deployment and replication
plans (i.e. number and location of copies) via JFP inference
in the DBN. Then, they inform the service provider about
the optimum deployment in terms of JFP and/or replication
cost. Inference and evaluation steps are repeated for each

2https://aws.amazon.com/ec2/sla/
3https://www.oasis-open.org/committees/tosca/



new service request, whereas DBN model needs to be
updated only when underlying edge computing infrastructure
changes substantially.

After providing brief background information on edge
computing failures in the following section, we formally
define the concerned problem and our model in Section
III. Whereas, in Sections IV and V, we elaborate on our
main contributions, namely computing JFP and optimizing
service deployment. Then, in Section VI, we provide the
evaluation of our approach via extensive simulation and real-
world failure traces. Finally, we review relevant literature in
Section VII and make concluding remarks in Section VIII.

II. BACKGROUND ON EDGE FAILURES

Although our approach does not differentiate between the
types of dependency (e.g. association, correlation, causa-
tion), it is worthwhile to identify possible reasons behind
this phenomenon. Two broad categories of spatial correlation
between failures are considered in the literature [7].

Multiplication: Failures occur simultaneously in multiple
servers due to a common cause.

Propagation: Failure in one server eventually causes
further failures in other servers.

In the context of edge computing, some examples of
dependency that belong to the former category include:
a network failure affecting multiple servers in the same
physical/virtual network; a power outage affecting multiple
servers in the same power grid; multiple servers deployed
in hostile locations failing due to environmental/weather
interference; an extraordinary public event (e.g. election,
sport competition, etc.) overloading servers in a geograph-
ical area; or failure/cyber-attack in a centralized controller
that manages multiple servers. Whereas, cascading failures,
which occur after a single server failure and spread due to
workload redistribution (network or computation), belong
to the failure propagation category. Reattempts of failed
actions by users often amplify the outcomes of cascading
failures. Another example can be a latent software defect or
malicious software transmitting to other components, which
are deployed at distributed servers.

Above listed factors are not usually transparent to the
user and it is too exhaustive to take measures for each
factor independently. Moreover, failures in edge servers are
substantially more critical than those in massive cloud data
centers since almost all use cases are time sensitive. Widely
used cloud resilience techniques such as very high redun-
dancy, re-execution, or checkpointing, may not be efficient
or comparably effective in edge scenario due to their high
computational overhead and limited capacity of edge servers.
Additionally, unstructured and ad hoc implementation of
edge computing topology, as well as its dynamicity hinder
approaches based on shared risk groups or availability zones.
Due to strict latency requirements, all admissible candidates
for replication may belong to few such groups or zones (e.g.

Table I
NOTATION AND SYMBOLS USED IN THE PAPER

Symbol Definition
δ A deployment 〈c, s〉 of a service copy and an edge server
∆ Set of all deployments of a service, δ ∈ ∆
K Set of all components of a service
S Set of all defined edge servers
S′ Set of admissible edge servers for a service, S′ ⊆ S
S∆ Set of edge servers that host a service, S∆ ⊆ S′
c A copy or replica of the service
p Maximum acceptable failure probability of a service
pmin Failure probability of an optimum deployment
m Number of copies for a service
fδ Random binary event representing failure of a deployment
f∆ Random binary event representing failure of a service
f ts Random binary event representing failure of server s at time t
F Set of all f ts for all s ∈ S and for all t
G Structure graph of a dynamic Bayesian network, G = 〈V, L〉
V Vertices of graph G
L Links (edges) of graph G
A Ancestral graph for S∆ in G, A = 〈V ′, L′〉, A ⊆ G
P Set of parent vertices of event fs in G, P ⊆ V
Θ Parameters (CPTs) of a dynamic Bayesian network

servers in the same region, site, rack, etc.), which adds to
inherent dependency. Although edge providers may under-
standably adapt methods from cloud computing, there is still
a need for resilience techniques that take unique features
and limitations of edge computing into consideration so that
comparable availability levels are possible [15].

III. PROBLEM MODELING AND DEFINITION

We provide the notation and symbols used throughout
the paper in Table I, whereas few less frequent symbols
are defined where they are used. In the following, we
first introduce the failure probability model and then the
optimization problems.

A. Failure Probabilitization

Services deployed at the edge have various resilience
requirements. These are often communicated through relia-
bility SLAs such as minimum service level, availability level
(e.g. number of nines), or maximum acceptable downtime,
which are subject to a resource cost budget (e.g. maximum
number of replicas). On the other hand, failure character-
istics of edge servers can be represented with mean time
between failures (MTBF), hazard rate, availability, etc. In
an attempt to standardize and simplify the terminology, we
introduce the notion of a deployment pair, δ = 〈c, s〉, and
its failure, fδ , as a binary random event. A deployment
pair (deployment for short in the remainder of the paper)
consists of a copy of the service (c) and an edge server (s)
which hosts that copy. This also allows us to incorporate
failures that occur in the client software, virtual platform,
host operating system, hardware, or infrastructure as a single
consistent event. In (1), we define failure probability of a
deployment as its unavailability, which is the ratio of the
duration that it is not accessible by users to its lifetime.



Pr(fδ) =
{Downtime}

{Uptime}+ {Downtime}
(1)

We further define an edge service as a set of deployments,
∆. Each δ ∈ ∆ runs a copy of the service. Joint failure
probability, Pr(f∆), can be stated in different ways based
on the availability definition of the client. For instance, in
active-standby replication given in (2), the service is as-
sumed available unless all deployments fail, since a standby
deployment takes over when the active one fails. In load
sharing replication, however, all deployments are active and
share the workload. As given in (3), the service is available
as long as at least n deployments out of n+ k are available
(i.e. minimum service level). Or in other words, up to k
failed deployments are tolerated.

Pr(f∆) = Pr

(⋂
δ∈∆

fδ

)
(2)

Pr(f∆) = Pr

 ⋃
D⊆∆
|D|=k+1

⋂
δ∈D

fδ

 (3)

In this work, we assume single-component edge services
where all copies carry out the same task, however, definitions
in (2) and (3) can be easily generalized to multi-component
case as shown in (4). Here, K is the set of service com-
ponents and [∆]

κ is the set of all deployments that run
component κ as defined in (5). It is also possible to define a
custom JFP function where each component has a different
availability definition or some components are noncritical
and do not have any impact on service availability.

Pr(f∆) = Pr

( ⋃
κ∈K

f[∆]κ

)
(4)

[∆]
κ

= {〈c, s〉 ∈ ∆ | c← κ} (5)

First part of the problem that we are addressing in this
study is to accurately forecast the failure ratio during the
interval that an edge service is running. The forecast is
based on the JFP of the deployment set. We believe, failure
forecasting comes in very useful for management of edge
resources in different stages. It can be used (i) at design
time to evaluate software models in terms of resilience; (ii)
at deployment time to compare replication and deployment
alternatives; or (iii) at execution time to take measures (e.g.
migrate, replicate etc.) before failures.

B. Deployment Optimization

Among the possible use cases pointed out in Section
III-A, we focus on optimizing the failure resilience at service
deployment as the second part of the problem. Given a set
of admissible edge servers, S′, we aim to minimize either

JFP or number of deployments. Here, the set S′ contains
only the servers that satisfy QoS requirements among all
defined servers, S. More formal definitions of the two
complementary optimization problems are as follows.
Optimization Problem 1 (OP1): Number of copies to be
deployed is predefined and objective function minimizes the
JFP of deployment set. First constraint in (6) states that each
deployment is between a service copy and an admissible
server, whereas the second one guarantees that the total
number of copies is fixed to given m.

minimize
∆

Pr(f∆)

subject to ∀δ ∈ ∆(δ = 〈c, s〉 ∧ s ∈ S′),
|∆| = m.

(6)

Optimization Problem 2 (OP2): Maximum acceptable
failure probability, p, is predefined and objective function
minimizes deployment set cardinality (i.e. the number of
copies). Second constraint in (7) ensures satisfaction of
resilience requirement.

minimize
∆

|∆|

subject to ∀δ ∈ ∆(δ = 〈c, s〉 ∧ s ∈ S′),
Pr(f∆) ≤ p.

(7)

IV. JOINT FAILURE PROBABILITY (JFP)

JFP is the probability that all copies of an edge service
are unavailable due to concurrent failures at the servers in
which they are hosted. Note that, this definition corresponds
to the service interruption definition of active-standby repli-
cation in (2). Techniques described in this section can also
be applied to (3), but we omit this scenario for brevity.
There exist efficient and accurate algorithms in distributed
systems literature to forecast availability or marginal failure
probability (MFP) of a single deployment, Pr(fδ). Some
example approaches include use of recent availability ratio
[16], support vector machines [17], and probabilistic graph-
ical models [18]. As defined in (1), we use unavailability
ratio of the edge server to estimate MFP. However, JFP
is substantially harder to forecast unless independence is
assumed.

A naive solution to the JFP computation problem is to
assume that the failure of a deployment is independent from
failures of other deployments. In this case, it is sufficient
to compute and store MFP of each deployment resulting in
O(|∆|) probabilities. JFP with independence assumption is
calculated as follows.

Pr

(⋂
δ∈∆

fδ

)
=
∏
δ∈∆

Pr(fδ) (8)

In contrast, one may assume that each deployment is
dependent to all others to some extent, where JFP can be



computed via chain rule as below. In this case, computation
and storage of O(2|∆|) probabilities are needed.

Pr

(⋂
δ∈∆

fδ

)
=

|∆|∏
i=1

Pr

fδi
∣∣∣∣∣
i−1⋂
j=1

fδj

 (9)

Both of these extreme solutions, however, have substantial
shortcomings. The former, while being computationally effi-
cient, ignores valuable information about concurrent failures.
Hence, the forecast can be inaccurate. The latter, on the
other hand, has high time and space complexity as well
as possibly low accuracy due to noise from coincidental
dependencies. Consequently, we make use of probabilistic
graphical models in order to model the most significant
conditional dependencies along with uncertainty in a com-
pact and efficient way. More specifically, we model spatial
and temporal failure dependencies via a dynamic Bayesian
network (DBN) and make inferences with DBN via an
algorithm based on variable elimination technique.

A. Dynamic Bayesian Networks

Among other probabilistic graphical models, we choose
DBN for our purpose mainly because of its capability
to represent temporal dependencies between events, unlike
regular Bayesian networks [19], for example. This is crucial
to capture cascading failures, which are dependent but occur
at different times. Other relevant strengths of DBN in the
context of this work are listed below.
• DBN infers not only dependencies themselves but also

the direction of causality because it incorporates tem-
poral information [20]. This way we can distinguish
between failures that are cause and effect.

• Failure events are nonlinear, hence their dependency
can be captured by DBN but not by linear estimators
such as Kalman filters [7], [20].

• DBN holds significant performance improvements with
respect to hidden Markov models (HMM) because
number of states in HMM grows exponentially [20].

• DBN is the most general graphical model which in-
cludes HMM and Kalman filters as special cases [21].

A DBN is defined as the pair 〈G,Θ〉 for a set of random
variables R = {rt1, rt2, . . . , rtn} where t is the time step
and t = 1, 2, . . . , T . Here, G is a directed acyclic graph
(DAG) with vertices representing variables at different time
steps and links representing the dependency assumptions
between them. According to independence assumption in
Bayesian networks, each variable rti is directly dependent
on its parents in G and independent of its non-descendants
given these parents. Second element of the pair, Θ, is
a set of probabilities for each variable conditional to its
parents. There exists a parameter θ ∈ Θ for each possible
combination of values that rti and its parents can take, such
that θ = Pr(rti | parents(rti)).

S2 S1 S3

Figure 2. An example scenario to illustrate failure dependencies.
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Figure 3. Simplified structure of an example dynamic Bayesian network.

Table II
AN EXAMPLE CPT FOR f t1 FROM FIG. 3

f t−1
2 f t3 Pr(f t1) Pr(¬f t1)
T T 0.10 0.90
T F 0.08 0.92
F T 0.06 0.94
F F 0.05 0.95

In our case, the variables, for which DBN is defined,
are binary failure events of edge servers (i.e. R =
{f t1, f t2, . . . , f tn}). There may be multiple variables in DBN
that correspond to the same server but at different time steps.
Let us illustrate how failure dependencies are modeled with
the small scale example in Fig. 2, which consists of three
edge servers: S1, S2, and S3. Fig. 3 is the simplified structure
of a corresponding DBN. In this example, S1 and S2 are
powered by the same electricity grid causing joint failures
in the past. Hence in Fig. 3, failure events f1 and f2 are
dependent at the same time step t. Similarly, f1 and f3 are
concurrently dependent because S1 and S3 share the same
network connection. Direction of the dependency is trivial
in concurrent dependencies. In addition, edge servers are
configured to dispatch their tasks to others in the case of
overload as indicated with blue arrows in Fig. 2. This is a
typical cause of cascading failures, which are represented
with dependencies in consecutive time steps (t − 1 and t)
in Fig. 3. Circular dependencies are not captured by the
definition of DBN.

Furthermore, in Table II, we provide the conditional
probability table (CPT) for S1. As an example interpretation
from the CPT, failure probability of S1 at time t given that
S2 failed in the previous time step (t− 1) and that S3 does
not fail at t is Pr(f t1 | f t−1

2 ¬f t3) = 0.08. In the proposed



technique, both DBN structure and CPTs are automatically
trained based on historical failure traces as shown in Fig.
1. Traces are ordered chronologically and clustered into
fixed-length time steps, such that overlapping failures are
regarded as concurrent. Failures in different but consecutive
time steps, on the other hand, are used to infer temporal
dependencies as in the case of cascading failures. Further
details of the DBN training are described in Section VI.

B. Joint Probability Inference

Given a DBN model, 〈G,Θ〉, we are interested in inferring
the joint probability of certain events. More specifically, we
aim to compute the failure probability of the edge servers
that are to be allocated by a given service deployment ∆.
This process is illustrated in Fig. 1, whereas specific set of
servers is defined in (10). Then, computed probability value
(i.e. JFP) in (11) is treated as the forecast.

S∆ = {s ∈ S | 〈c, s〉 ∈ ∆} (10)

Pr(f∆) = Pr

( ⋂
s∈S∆

fs

)
(11)

Below introduced optimization steps significantly reduce
the time-complexity of exact inference. Resulting perfor-
mance suffices for the size and complexity of DBNs that
are learned from data in our evaluation, as described in
Section VI. However, for models with greater number of
variables (> 1000) and allowed parents per variable (> 5),
approximate inference algorithms can be useful. Some ex-
amples include sampling techniques such as Monte-Carlo,
or variational inference algorithms such as mean field.

Independence assumption of Bayesian networks states
that a variable is conditionally independent of its non-
descendants, given its parents. This allows us to factorize
the joint distribution of all variables by conditioning each
variable only on its parents in the DBN. This is given in
(12) where Ps is the parent set of variable fs. Note that,
significantly fewer conditional variables are needed with
respect to (9), decreasing from O(|S|) to O(|Ps|).

Pr

(⋂
s∈S

fs

)
=
∏
s∈S

Pr

fs
∣∣∣∣∣ ⋂
γ∈Ps

fγ

 (12)

Moreover, all these conditional probabilities are already
available in Θ. Hence, one way of computing the JFP, as in
(13), is to leave interested variables (S∆) and marginalize
out all others (S\S∆) by summing up the probability values
for all possible combinations of them.

Pr(f∆) =
∑
S\S∆

∏
s∈S

Pr

fs
∣∣∣∣∣ ⋂
γ∈Ps

fγ

 (13)

Algorithm ANCESTRAL–GRAPH

Input DBN structure graph: G = 〈V,L〉
Deployment servers: S∆

Output Ancestral graph for S∆: A = 〈V ′, L′〉
1: V ′ ← ∅, L′ ← ∅ # A is initially a null graph

2: Q← S∆ # Initialize the queue

3: for all q ∈ Q do # While the queue is not empty

4: P ← {p ∈ V | 〈p, q〉 ∈ L} # Parents of q in G

5: Q← {Q ∪ P} \ {q} # Queue P and dequeue q

6: V ′ ← V ′ ∪ {q} # q belongs to A

7: L′ ← L′ ∪ {〈x, y〉 ∈ L | y = q} # Links to q

8: end for # belong to A

Figure 4. Pseudo code description of ancestral graph extraction.

In (13), we sum the probability over all 2|S\S∆| possible
instantiations of uninterested variables. Although the result
would be correct, the summation can be optimized computa-
tionally in several ways. First, some of the variables in S\S∆

may be independent of, thus have no contribution to the joint
probability of the variables in S∆. More specifically, we only
need the variables that are ancestors of at least one variable
in S∆ according to d-separation algorithm for independence
in Bayesian networks [22]. Hence, we build a subgraph of
the original DBN which consists of only concerned variables
(S∆) and all their ancestors. Extraction of this so-called
ancestral graph is described via pseudo code in Fig. 4. Once
we obtain the set of ancestor nodes V ′, it can be safely used
instead of S in (13).

Consider the DBN in Fig. 3 and assume that we need
to deploy a service with two copies, c1 and c2. Among
other alternatives, let us evaluate the failure resilience of
deployment set ∆ = {〈c1, s1〉, 〈c2, s3〉}, so we are interested
with the servers S∆ = {s1, s3} and their JFP, Pr(fs1fs2).
From Fig. 4, ancestral graph of S∆ contains variables f t−1

1 ,
f t−1

2 , f t1, and f t3. Hence, we can factorize and marginalize
the joint probability as follows.

Pr(fs1fs3) =
∑
ft−1
1

∑
ft−1
2

Pr(f t−1
1 f t−1

2 f t1f
t
3)

=
∑
ft−1
1

∑
ft−1
2

Pr(f t−1
1 ) Pr(f t−1

2 )

Pr(f t1 | f t−1
2 ) Pr(f t3 | f t−1

1 f t−1
2 )

(14)

As a second performance optimization, we implement
well-known variable elimination algorithm, which reduces
the number of summation steps via dynamic programming.
While the formal definition of the algorithm is given else-
where [23], the main idea behind is to move probabilities
out of certain summations. This can be safely done when
the index variable of the summation does not appear in the
conditional probability. Continuing the example from (14),



we can move the probability Pr(f t−1
1 ) out of the summation∑

ft−1
2

because variable f t−1
2 does not appear in it.

Pr(fs1fs3) =
∑
ft−1
1

Pr(f t−1
1 )

∑
ft−1
2

Pr(f t−1
2 )

Pr(f t1 | f t−1
2 ) Pr(f t3 | f t−1

1 f t−1
2 )

(15)

However, different orders of parameter elimination are
possible and significantly affect the number of computation
steps (but not the outcome). Since finding the optimum
ordering is an NP-complete problem, various heuristics are
used in practice [23]. Due to its simplicity and being one
of the four heuristics that perform well in practice [24], we
resort to Min-neighbors heuristic which eliminates variables
in ascending order of dependents. For example, eliminating
f t−1

1 (one dependent) before f t−1
2 (two dependents) would

result in following equation with fewer summations.

Pr(fs1fs3) =
∑
ft−1
2

Pr(f t−1
2 ) Pr(f t1 | f t−1

2 )

∑
ft−1
1

Pr(f t−1
1 ) Pr(f t3 | f t−1

1 f t−1
2 )

(16)

Finally, time-complexity of exact inference is reduced
from O(2|S|) to O(|V ′| 2M ) where M is the maximum
number of variables in a summation term.

V. DEPENDENCY-AWARE FAILURE RESILIENCE (DAFR)

Having an effective method for forecasting failure prob-
ability of prospective deployment sets, it is possible to
optimize task scheduling at the edge to develop failure
resilience. DAFR algorithms that we describe in this section,
propose a novel way of incorporating failure dependency
information into the decision making process at service
deployment time. Hereby, we aim to maximize the efficiency
of replication in service resilience. In this context, efficiency
means achieving either higher availability with the same
number of copies or same availability with fewer copies.

We introduce two algorithms that correspond to OP1
and OP2 from Section III-B. Input and output relationships
between the algorithms and JFP inference are given in
Fig. 1. The first one, described via pseudo code in Fig.
5, finds the deployment set of given cardinality with the
lowest JFP. This is useful when the service provider has
a fixed budget and expect the highest possible resilience
under current state of the edge servers. The set of admissible
servers, S′, which is one of the inputs to the algorithm,
deserves specific consideration. In most cases, resilience is
not the only QoS requirement of a service and other factors
such as network latency, available bandwidth, computational
capacity are also considered. Since optimization of all these
factors is beyond the scope of this paper and the purpose
is to demonstrate the significance of JFP, we assume that

Algorithm OPTIMIZE–JFP

Input Available servers: S′ ⊆ S
Initial copy of the service: c
Number of copies to deploy: m

Output Optimum deployment set: ∆
JFP of the optimum deployment set: pmin

1: C ← {C ⊆ S′ | |C| = m} # m-subsets of candidates

2: pmin ← +∞
3: for all C ∈ C do # For each candidate set

4: p← JFP(C) # Compute JFP as in (13)

5: if p < pmin then # If better than current best

6: pmin ← p # Update best JFP

7: S∆ ← C # Update best candidates set

8: end if
9: end for

10: ∆← ∅ # Initially deployment set is empty

11: for all s ∈ S∆ do # For each server in S∆

12: c′ ← CLONE(c) # Create another copy of c

13: ∆← ∆ ∪ {〈c′, s〉} # Add a new deployment

14: end for

Figure 5. Pseudo code description of failure probability optimization given
the size of deployment set.

Algorithm OPTIMIZE–SIZE

Input Available servers: S′ ⊆ S
Initial copy of the service: c
Maximum acceptable failure probability: p

Output Optimum deployment set: ∆
1: for m = 1 to |S′| do # Test increasing ∆ sizes

2: {∆, pmin} ← OPTIMIZE–JFP(S′, c,m)
# Find the optimum deployment of size m

3: if pmin ≤ p then # If JFP is acceptable

4: break # Stop the search

5: end if
6: end for

Figure 6. Pseudo code description of deployment set size optimization
given maximum acceptable JFP.

S′ is prefiltered to contain only the servers that satisfy
aforementioned requirements. In a real world setting, JFP
can be used as one of the determinants in a multi-objective
scheduler, along with aforementioned QoS requirements.

OPTIMIZE–JFP() iterates over all m-subsets of avail-
able servers in order to identify the combination that yields
the lowest JFP (lines 3–9). Then, a new copy is deployed
on every server in this identified combination (lines 11–14).
Considering |S′| ≥ m, there exists O(2|S

′|) subsets and
hence calls to JFP(), which itself has the time-complexity
of O(|S′| 2M ). Thus, the time-complexity of the algorithm is
O(N 2N+M ), where N is the number of admissible servers
(i.e. |S′|) and M is the length of the longest factor (in terms
of number of variables) in the JFP inference step.



The second algorithm, OPTIMIZE–SIZE() in Fig. 6,
on the other hand, does not have an input parameter for
deployment size, but for maximum acceptable JFP value.
Starting from m = 1 and incrementing m at each iteration
(line 1), it calls OPTIMIZE–JFP(), which in turn returns
the optimum deployment set and corresponding JFP for the
given value of m (line 2). When a deployment set that satis-
fies the maximum JFP constraint is found, search is stopped
and the algorithm outputs the set (lines 3–5). Consequently,
outputted deployment set is of not only minimum size but
also minimum JFP given its size. If it is not possible to
find a deployment that satisfy the requirement, the one with
the highest JFP and size is returned. In the worst case, N
calls to OPTIMIZE–JFP() are made, resulting in an overall
time-complexity of O(N2 2N+M ).

An important point is that, although DAFR algorithms find
optimum solutions, neither of them gives any availability
guarantee since the optimized parameter, JFP, is stochastic.
In other words, they provide the best effort given the
function for forecasting future failures. As emphasized in the
introduction of this paper, this suffices for typical latency-
sensitive edge services except safety-critical and hard real-
time systems such as self-driving cars or telemedicine.

VI. EVALUATION

A. Experimental Setup

We evaluate JFP forecasting technique and DAFR al-
gorithms via simulation of a practical use case. An edge
computing vendor receives resource requests from its cus-
tomers (i.e. service providers) who have certain resilience
objectives. The vendor must, not only satisfy customer
requirements and avoid SLA violations, but also minimize
over-provisioning of service replicas to more effectively
monetize limited resources.

To that end, we implement a task scheduling simulator
for edge computing in Java. The simulator generates 10,000
service requests at equal time intervals. Availability defini-
tion of the service can randomly belong to either category
described in Section III-A, namely load sharing and active-
standby, whereas number of copies are chosen uniformly
at random from the range [1, 5]. Then, generated tasks are
deployed by the vendor on a subset of currently available
servers via proposed and baseline algorithms. Availability of
servers at a time is obtained from real failure traces. Unless
stated otherwise, we repeat our simulations for 10 disjoints
sets of 100 randomly selected servers from each data set
and report average results. For each set of servers, failures
in the first half of the total time span are reserved for DBN
learning and the rest for task scheduling simulation.

OPTIMIZE–JFP, OPTIMIZE–SIZE, and baseline al-
gorithms are implemented in Java (JDK 1.8). The main
program executes them sequentially by generating a new
service request at each iteration. Available edge servers
based on real failure traces at each interval are taken as
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Figure 7. Comparison of edge computing implementations and correspond-
ing data sets in terms of proximity, availability, and computing power.

the set of admissible candidates. Deployments outputted
by each algorithm are compared to future failure traces
in running time of the task in order to log statistics such
as percentage downtime or number of SLA violations.
Data communication between the modules shown in Fig.
1 is implemented through shared variables for DBN graph,
CPTs, user requirements (p and m), etc. Simulations are
executed on a machine with quad-core i7-6700HQ CPU and
8GB of memory.

B. Failure Traces

To the best of our knowledge, there does not exist an edge
computing reliability data set that is available to the research
community at the present time. This is because of not only
the novelty of technology, but also the obstacles to making
workload traces of commercial systems publicly available,
such as competitive concerns, privacy obligations, and hard-
ness of data anonymization [25]. Consequently and as with
the previous work in system reliability literature [26]–[30],
we take failure traces and infrastructure information from
real world systems, and simulate a distributed system with
synthetically generated workload. Moreover, implementation
of edge computing paradigm is not yet standardized which
results in a diverse set of reliability characteristics. In the
case of fog computing [31], for instance, virtualization
infrastructure is the networking hardware such as routers,
switches, or proxy servers, which are expected to have a
certain level of reliability. In other approaches, however,
virtual computing environment is formed by, for instance,
cloudlets located in business premises without extensive sup-
port systems [32] or even client devices (e.g. desktop PCs,
tablets, smart phones, etc.) [33], [34] which results in sig-
nificantly lower availability. Due to their distinct strengths,
these different infrastructures will most probably coexist.
To generalize the outcomes, we run separate simulations
with real failure traces from three large-scale distributed
systems with distinctive characteristics as depicted in Fig.
7. Here, mean availability of servers are calculated from
the values in corresponding data sets, whereas the ordinal
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values of computing power (represented with server icons)
and average round-trip time (RTT) are evaluated based on
literature [1], [2], [35].

In addition, availability distribution of servers in each
data set is given in Fig. 8. Local Domain Name Servers
(LDNS) data set [36] contains ping probes initiated to
servers at exponential intervals with a mean of 1 hour,
between March 17 to March 24, 2004. 62,201 LDNS servers
in this data set substitute for edge servers deployed on
networking hardware, hence exhibit high reliability. As
shown in Fig. 8, around 80% of the servers achieve higher
than 95% availability. Second data set [37] belongs to the
hybrid peer-to-peer system of Skype voice over IP service.
Supernodes, which are selected by Skype protocol based
on reachability and spare bandwidth, are pinged in 30-
minute intervals between September 18 to October 4, 2005.
We use a distilled version of the data sets which contains
2,081 supernodes. SKYPE data set represents a reliability
middle ground between implementing edge computing on
dedicated servers and on client devices. Around 35% of
nodes are available more than 95% of the time and the
rest are distributed to remaining availability intervals in a
roughly uniform way. Finally, failure traces of UC Berkeley
SETI@home volunteer computing project is collected [38]
from 226,208 personal computers between April 1, 2007 and
January 1, 2009. As might be expected, this data set models
an edge infrastructure that is formed by virtualized client
devices with high churn and low reliability. Nearly one fifth
of the nodes have 5% or lower availability whereas only 4%
achieve 95% or higher availability.

C. DBN Learning

For learning the DBN structure, G, we utilize Banjo
framework4 by Duke University. Use of an open-source and
well tested code for machine learning tasks instead of our

4https://users.cs.duke.edu/ amink/software/banjo/
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Figure 9. DBN learning performance over time.

own implementation provides us with superior reliability and
error-free results. Other machine learning toolboxes such as
Weka5 and bnlearn6 do not have native support for training
DBNs. Finding the optimum structure that best describes
the data is an NP-complete problem [39]. Hence, structure
learners almost always include heuristic and approximation
steps. Banjo searches for candidate graphs via simulated
annealing, a Monte Carlo metaheuristic. We configured
Banjo to allow Markov lags of 0 and 1, which means only
the dependencies between failures in the same or consecutive
time steps are captured.

Banjo does not support parameter learning (i.e. CPTs), so
we implement our custom program in Java that obtains each
conditional probability via maximum likelihood estimation
(MLE). MLE is a standard technique for parameter learning
and it assumes that the probability is equal to the number
of historical occurrence of all events (interested and given)
divided by that of only given events. Continuing from the
previous example in Fig. 3 to illustrate CPT training, second
row in Table II is estimated via MLE as shown in (17). Here,
σ is a function that maps logical true to integer 1 and false
to 0, whereas f t1 is the interested event.

Pr(f t1 | f t−1
2 ,¬f t3) =

∑T
t=2 σ(f t1 ∧ f t−1

2 ∧ ¬f t3)∑T
t=2 σ(f t−1

2 ∧ ¬f t3)
(17)

We run several experiments to investigate the effect of
training time to the network accuracy. Network accuracy
is defined as the extent that a network represents data,
and measured by likelihood-equivalence Bayesian Dirichlet
(BDe) metric [40]. As Fig. 9 demonstrates, number of
explored networks grow at a near-linear rate, whereas BDe
score improves quite slowly and with a decreasing rate. 6.4-
fold increase in network size results in only 2.9% higher

5https://www.cs.waikato.ac.nz/ml/weka/
6http://www.bnlearn.com/



score. The results here are from a DBN training on the
750 randomly chosen servers of the SETI@home data set,
however experiments with others, which are omitted for
brevity, yield almost identical results. Based on this analysis,
we resolve that training time in the order of minutes is
sufficient for relatively small DBNs (≤ 1000 variables).
In the rest of evaluation, we used DBNs that are trained
for 10 minutes which corresponds to 300 Million explored
networks. Parameter learning time, on the other hand, is in
the order of seconds and negligible compared to structure
learning time.

D. Baseline Algorithms

Both DAFR algorithms proposed, OPTIMIZE–JFP and
OPTIMIZE–SIZE, are compared against two other tech-
niques from the literature as well as random (i.e. failure-
oblivious) scheduling to evaluate the significance of im-
provement.

Random Scheduling (RANDOM): Each copy is placed
to a server chosen uniformly at random. Simulation time is
used as the random seed.

Prior-based Scheduling (PRIOR): Availability of a
server is assumed to remain the same as its recent past and
tasks are scheduled to the servers with highest past avail-
ability. This technique is proposed in [16] to improve fault
tolerance of Apache Storm applications. In our experiments,
availability in the last five hours yielded the best accuracy
for this baseline algorithm.

TTF-based Scheduling (TTF): Support Vector Machine
(SVM) regression is successfully utilized in [17] for fore-
casting future time to failure (TTF) values. To compare this
technique to ours, we implement the sequential minimal
optimization [41], which is arguably fastest known algorithm
for SVM regression. In this baseline, tasks are scheduled
to the servers with the longest remaining time to failure,
which can be calculated as RTTF = PTTF− TSLF, i.e. the
difference between predicted time to failure and time since
last failure. Sample data size for historical TTF values is 50
in our experiments.

E. Results and Discussion

1) OPTIMIZE–JFP: Fig. 10 and 11 show mean down-
time percentages of deployed services using LDNS
and SKYPE data sets respectively. In both experi-
ments, OPTIMIZE–JFP achieves very high availability:
99.9998% in the worst case for LDNS and 99.9252% for
SKYPE, outperforming all baselines. Among them, TTF
performs the best, whereas failure-oblivious scheduling (rep-
resented with RANDOM) leads to up to 1.0% downtime
in LDNS and 4.4% in SKYPE. Downtime percentages of
all algorithms are significantly lower in LDNS reflecting
higher reliability of the DNS servers. In Fig. 13 and 14,
on the other hand, we present the mean percentage of the
time that at least one deployment fails but the minimum

service level is maintained. This does not necessarily lead
to downtime, but temporary loss of redundancy unless more
failures follow. The minimum service level is based on the
availability definition of each service described in Section
III-A and corresponds to a maximum tolerable number
of failed deployments. Interestingly, in LDNS case, the
loss of redundancy with OPTIMIZE–JFP is slightly more
common than that of TTF, and total unavailability (sum
of downtime and loss of redundancy) in the case of these
two algorithms are almost the same. This demonstrates that,
availability enhancement by OPTIMIZE–JFP arises from
not only detecting individually most reliable servers but also
accounting for their joint failure. Hence, the significance
of dependencies in failure forecasting and failure-aware
scheduling is confirmed.

Since proposed and baseline scheduling algorithms do not
feature re-evaluation of failures and migration of tasks, it is
expected that the service availability decreases as the task
length increases. It is not likely that certain edge servers will
run failure free when the task last several days. This trend
is particularly evident in experiments with SETI data set,
in which we are able to evaluate long term services owing
to the vast amount of available data. SETI experiments
are conducted with random sets of 750 servers, instead of
100 as with others. As seen in Fig. 12, TTF outperforms
OPTIMIZE–JFP for tasks longer than 60 hours. We believe
the reason is that the dependency information, which is bet-
ter captured by OPTIMIZE–JFP, loses its currency earlier
than the reliability trends of individual servers, which are
better captured by TTF. Indeed, the loss of redundancy (Fig.
15) in all methods seem to converge to a value representing
the typical availability of a server in the data set (44%). This
shows that the initial selection of servers does not maintain
high availability indefinitely and migrations are necessary.
Considering a reasonable task length up to 10 hours, worst
case availability using the proposed algorithm is 99.7478%.

Characteristics of downtime and loss of redundancy trends
with SETI data set are similar to those with LDNS (e.g.
OPTIMIZE–JFP has higher loss of redundancy but lower
downtime than TTF for tasks up to 60 hours). Consequently,
we identify two classes of edge computing infrastructures
for service resilience based on their availability distribution.
In the first case represented by SKYPE data set, edge
servers are highly heterogeneous in terms of their availability
levels. Thus, it is of capital importance to detect the highly
available ones. In the second case however, availability of
vast majority of the servers are quite similar: either very
high as with LDNS or very low as with SETI. This poses
an additional challenge of joint failure prediction. In other
words, co-occurrence of failures gains more importance and
demands more attention, when all alternative servers have
roughly equal availability. According to our results, proposed
algorithm accomplishes both these tasks effectively.

Although mean availability percentages show an overall
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Figure 10. Service downtime results (LDNS).
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Figure 11. Service downtime results (SKYPE).
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Figure 12. Service downtime results (SETI).

0 1 2 3 4 5 6 7 8 9 10

5

10

15

Task Length (hrs)

L
os

s
of

R
ed

un
da

nc
y

(%
)

Figure 13. Loss of redundancy results (LDNS).
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Figure 14. Loss of redundancy results (SKYPE).
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Figure 15. Loss of redundancy results (SETI).
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Figure 16. SLA violation results (LDNS).
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Figure 17. SLA violation results (SKYPE).
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Figure 18. SLA violation results (SETI).

picture, a practical concern for service and infrastructure
providers alike is the frequency of SLA violations. Details
of particular violations may be overwhelmed by thousands
of deployments when only the averages are reported. Thus,
in Fig. 16 to 18, we present the number of SLA violations
caused by each algorithm. SLA requires a strict 99.9%
availability in these experiments. Again, OPTIMIZE–JFP
outperforms all baselines significantly. The maximum num-
ber of violations is 5 in 10,000 requests with LDNS data
set, 717 with SKYPE, and 3,540 with SETI.

2) OPTIMIZE–SIZE: We also conduct several experi-
ments with dynamic number of copies using the proposed
OPTIMIZE–SIZE scheduling algorithm. In Fig. 19 and 20,
number of deployed copies and percentage downtime are
reported with various values of p for SKYPE and SETI,
which are the representatives for the two classes of data
sets as described above. To illustrate the benefits, proposed
algorithm is compared to the static TTF algorithm, the best
performing baseline, configured to deploy two copies of each
service. This corresponds to 20,000 deployments that are
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Figure 19. Downtime and copies for OPTIMIZE–SIZE (SKYPE).
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Figure 20. Downtime and copies for OPTIMIZE–SIZE (SETI).

indicated with red dashed lines. Task length is chosen as two
hours in these experiments. As maximum acceptable failure
probability (p) increases, proposed algorithm manages to sat-
isfy the requirement with fewer and fewer copies but services
experience an adverse impact on downtime. TTF suffers
around 1% downtime (indicated with blue dashed lines)
irrespective of p in both cases. In 300 different values of p
evaluated for three data sets (not all are reported for brevity),
there does not exist a single case that OPTIMIZE–SIZE
suffers higher downtime with the same number of copies as
the baselines or that baselines achieve the same downtime
with less copies. Hence, it is a nondominated solution as far
as our results are concerned. Furthermore, in certain ranges
of p (e.g. roughly [0.01, 0.04] in Fig. 19 and [0.02, 0.11] in
Fig. 20), it is Pareto dominant, that is, proposed algorithm
achieves higher availability with fewer copies.

VII. RELATED WORK

Fault tolerance or resilience is a well studied topic within
the context of cloud computing. Widely used strategies
can be grouped under checkpointing [42]–[44], re-execution
[43], [45], and replication [44]–[46]. As we also discussed
in Section I, high overhead and long re-activation time
makes first and second groups of strategies infeasible when
real-time computing is required [47]. Replication based
approaches, on the other hand, do not make a distinc-
tion between availability levels or failure probabilities of
different nodes, and rightly so because availability levels
of servers within a cloud data center are not noticeably
different. One of the few exceptions is [47] where so-called
deteriorating physical machines are identified and proactive
measures (e.g. migration, rescheduling) are taken. However,
failure prediction is limited to CPU temperature forecasting
against overheating. Similarly, in [48], an analytical model
is proposed to estimate the reliability of subscribers in
publish / subscribe systems. Interested reader may also refer

to the comprehensive survey [49] for further details about
other fault tolerance approaches within the cloud computing
context.

Although essential for its success, resilience in edge com-
puting is still an open research area [15]. An early discussion
of reliability challenges in fog computing with respect to
cloud is presented in [50]. However, few attempts are made
to address these challenges. In our previous work [18],
we introduced a technique that exploits causal relationships
between different types of failure and channel all QoS
related parameters through VM availability. Nebula [51], an
edge based computation and storage architecture, handles
fault tolerance of compute nodes via re-execution. Although
data is replicated, availability is not a factor in replica site
selection. Cloud visitation platform [52], which aims to cope
with hardware heterogeneity problem in federated clouds
and fog via hardware awareness, solves failure resilience
only at local level. When a server fails, applications deployed
on it are migrated to another server, possibly in a different
cloud or fog node. Cardellini et al. [16] extends well known
distributed stream processor, Apache Storm, by adding QoS
awareness capability. Proposed scheduler chooses resources
based on network latency as well as utilization and avail-
ability. Here, recent availability of nodes is used instead of
predicting future availability. FogStore [53], is a distributed
data store, which handles replica placement and consistency
management. As the replicated objects are data blocks, the
focus of this work is on read and write latency. Recently, a
recovery scheme for edge computing failures is proposed
in [54]. However, only the failures that are caused by
overloaded resources are taken into account. Traffic data is
monitored to detect overloaded nodes and their load is shared
with others. Odin platform [55], is a practical application of
fault tolerance for distributed servers. It detects failures and
create backup scenarios in CDNs.



Failure dependency is considered in the context of other
distributed systems. In [7], a failure prediction framework
that exploits temporal and spatial correlation between failure
events is suggested. High accuracy of several prediction
algorithms including neural networks leads the authors to the
conclusion that failures are indeed correlated in distributed
systems and this information is useful for failure prediction.
Similarly, CFPA [9] is a failure prediction algorithm that
learns shared risk groups from data and assigns failure
probabilities to nodes. Both these works benefit from fail-
ure dependencies in predicting failures and availability of
individual nodes. However, they do not consider overall
availability of services with components and replicas in
different nodes. Another study that focuses on spatially
correlated failures is [8]. Here, authors analyze traces from
15 distributed systems to understand and model correlation
characteristics of failures, specifically group arrival process,
group size, and downtime. Their results demonstrate that
correlated failures are present in all analyzed systems and
they are the reason for the majority of downtime in 7 of
these systems.

VIII. CONCLUSION

Edge computing is a promising advancement in order
to incorporate future Internet services such as Internet of
Things, mobile and body computing, Industry 4.0, and
autonomous vehicles into the cloud ecosystem by bringing
computation to the edge of the network, where data is
produced and consumed. This could be otherwise impos-
sible due to two crucial characteristics that are common
to these services, namely data-intensity and time-sensitivity.
However, renouncing protective environment of massive data
centers in favour of geographical prevalence and locality,
means less reliable compute resources in the face of fre-
quent hardware and software failures. Existing resilience
techniques for cloud systems are not applicable due to scale,
distribution, and heterogeneity of edge computing resources.

In distributed systems, a failure in one server may be
correlated to failures in others due to either common causes
or propagation. Being informed about such dependencies
between edge servers allows not only forecasting future
availability of servers, but also identifying servers that are
less likely to fail concurrently. In this work, we propose
DBN based modeling and learning of failure dependencies
in edge computing systems. DBN facilitates efficient and
effective JFP inference for any set of servers. Thus, we
make use of JFP as a future availability forecast to evaluate
candidate deployments of an edge service that is replicated
in multiple distributed sites. Simulation results show that
proposed technique outperforms widely-used algorithms in
the literature in terms of both availability and cost. The
outcomes are generalized to different replication schemes
as well as failure characteristics from multiple large-scale
distributed systems.

This work is a step towards realizing promised benefits of
edge computing paradigm by offering a practical solution to
one of the major obstacles to its adoption: failure resilience.
Many applications, which cannot be included to the cloud
ecosystem due to their latency constraints, would be viable
for an edge–cloud or pure edge solution provided that
sufficient level of failure resilience is provided. We demon-
strate that DAFR techniques proposed in this paper can
achieve similar availability levels to cloud data centers, in the
presence of low-latency yet failure-prone edge servers. This
would be impossible or cost-inefficient via existing resilience
techniques that are intended for centralized systems. On the
other hand, network failures, which are currently handled
the same way as hardware and software failures, have par-
ticular impact on the availability of edge services since they
are deployed in distributed sites with possibly intermittent
network connection. Our future objectives include explicitly
factoring communication reliability in our resilience model
to cover all relevant aspects of the edge computing landscape
in sufficient depth. Another direction is the consideration of
safety-critical applications with hard real-time requirements.
To this end, failover techniques can be supported with a
proactive failure mitigation mechanism, which reevaluates
JFP at runtime and dynamically adjusts the number and
locations of copies.
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